Abstract
This paper discusses the development and application of universal type-curves for the design of Advanced Well Completions (AWCs) equipped with passive (non-adjustable), flow control devices {a.k.a. Interval Control Devices (ICDs)}. This work provides an innovative, rapid approach to their design without the need for numerical simulators.AWCs equipped with ICDs aim to delay the early breakthrough of unwanted fluids in wells constructed close to a reservoir fluid contact. An uneven inflow profile due to reservoir permeability heterogeneity, multiple fluid contacts or an undulating well path needs to be managed. In addition, the Heel-to Toe effect (HTE) by frictional pressure loss due to fluid flow along the length of the completion interval also promotes a non-uniform inflow profile.The main AWC design challenge is to balance the trade-off between loss in well productivity from the added flow restrictions and the benefit of an improved inflow profile. This paper reviews the development of the analytical modelling of the inflow performance of horizontal wells with ICD completions, It presents new semi-analytical, mathematical models describing the ability of AWCs to mitigate production problems created by (reservoir) permeability heterogeneity and the (in-well) HTE. New dimensionless numbers allow the development of universal type-curves (TCs) for AWC design. The new workflow is illustrated for several case studies and the results validated by their good agreement with calculations made with the standard “well-reservoir” numerical simulator employed by engineers for this task.This novel approach for rapid analysis of the implications of well log data, such as that obtained shortly before the beginning the installation of the well completion, is the latest addition to the well completion engineering toolbox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.