Abstract

The Saccharomyces cerevisiae transcription factor Ndt80 selectively binds a DNA consensus sequence (the middle sporulation element [MSE]) to activate gene expression after the successful completion of meiotic recombination. Here we report the X-ray crystal structures of Ndt80 bound to ten distinct MSE variants. Comparison of these structures with the structure of Ndt80 bound to a consensus MSE reveals structural principles that determine the DNA binding specificity of this transcription factor. The 5' GC-rich end of the MSE contains distinct 5'-YpG-3' steps that are recognized by arginine side chains through a combination of hydrogen bonding and cation-pi interactions. The 3' AT-rich region is recognized via minor groove contacts that sterically exclude the N2 atom of GC base pairs. The conformation of the AT-rich region is fixed by interactions with the protein that favor recognition of poly(A)-poly(T) versus mixed AT sequences through an avoidance of major groove steric clashes at 5'-ApT-3' steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.