Abstract

The recently developed process of temporal imaging expands or compresses time waveforms while preserving the shapes of their envelope profiles. A key element in a temporal imaging system is a time lens which imparts a quadratic phase modulation to the waveform being imaged. Several methods, such as electrooptic modulation, can be used to produce the phase modulation. In this paper, we concentrate on the parametric mixing of a signal waveform with a linearly chirped optical pump as the time lens mechanism. We analyze all single-lens system configurations including sum- and difference-frequency mixing schemes with positive and negative group velocity dispersions using temporal ray diagrams as an aid in understanding their operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call