Abstract

Publisher SummaryThis chapter focuses on the molecular organization, evolution, and expression of closterovirus genomes, as well as on their unique particle structure. The closterovirus group combines several positive-strand RNA viruses with very flexuous filamentous particles, of which beet yellows virus (BYV) is the type virus. Closteroviruses are distinct from other RNA viruses of plants in some important phenomenological aspects. They have genomes of up to 20 kilobases (kb), a value comparable only to those of the animal coronaviruses and toroviruses, which have the largest RNA genomes of all positive-strand RNA viruses. The existence of such genomes having a coding capacity several times that of an average RNA virus genome raises questions as to the trend whereby the long genomes have evolved and the possible novel functions they have acquired. The dramatic increase in the closterovirus genome coding capacity may be linked to the distinct ecological niche they occupy. Thus, closteroviruses are the only elongated plant viruses known so far to cause phloem-limited infections in plants and to persist in their insect vectors for many hours, in contrast to only minutes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.