Abstract

This paper demonstrates the possibility of active magnetohydrodynamic (MHD) control of supersonic flows containing shock waves. The shock wave configurations that occur at the inlet to a supersonic diffuser and in front of a streamlined semicylindrical model are used for the purpose of investigation. The impact is carried out by organizing local gas discharge regions when applying a magnetic field transverse to gas discharge currents. It has been shown that by changing the local region of application, the intensity and the direction of the gas discharge currents, it is possible to change the intensity and direction of the ponderomotive force acting on the gas flow during MHD interaction. The ponderomotive force control allows for acting locally on the shape and position of shock waves, the speed and direction of the flow, and the increase or reduction of pressure near the surface of the streamlined body. The experiments were carried out on a gas dynamic setup based on a shock tube in a gas dynamic path, capable of creating supersonic flows in a wide range of Mach numbers at M = 4–7. There was a possibility of organizing the electric and pulsed magnetic fields with an intensity of up to 1.5 T. The given experimental Schlieren flow patterns and the analysis of the obtained data demonstrate the MHD effect on: the change in the angle of inclination of the attached shocks, both into increase and decrease; the bow shock wave approaching the body or the removal from it; and the change in the aerodynamic drag and lift force of the streamlined bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call