Abstract

Renshaw cells provide a convenient model to study spinal circuit development during the emergence of motor behaviors with the goal of capturing principles of interneuron specification and circuit construction. This work is facilitated by a long history of research that generated essential knowledge about the characteristics that define Renshaw cells and the recurrent inhibitory circuit they form with motoneurons. In this review, we summarize recent data on the specification of Renshaw cells and their connections. A major insight from these studies is that the basic Renshaw cell phenotype is specified before circuit assembly, a result of their early neurogenesis and migration. Connectivity is later added, constrained by their placement in the spinal cord. Finally, different rates of synapse proliferation alter the relative weights of different inputs on postnatal Renshaw cells. Based on this work some general principles on the integration of spinal interneurons in developing motor circuits are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.