Abstract

During the last decade, equal-channel angular pressing (ECAP) has emerged as a widely-known procedure for the fabrication of ultrafine-grained metals and alloys. This review examines recent developments related to the use of ECAP for grain refinement including modifying conventional ECAP to increase the process efficiency and techniques for up-scaling the procedure and for the processing of hard-to-deform materials. Special attention is given to the basic principles of ECAP processing including the strain imposed in ECAP, the slip systems and shearing patterns associated with ECAP and the major experimental factors that influence ECAP including the die geometry and pressing regimes. It is demonstrated that all of these fundamental and experimental parameters play an essential role in microstructural refinement during the pressing operation. Attention is directed to the significant features of the microstructures produced by ECAP in single crystals, polycrystalline materials with both a single phase and multi-phases, and metal–matrix composites. It is shown that the formation of ultrafine grains in metals and alloys underlies a very significant enhancement in their mechanical and functional properties. Nevertheless, it is demonstrated also that, in order to achieve advanced properties after processing by ECAP, it is necessary to control a wide range of microstructural parameters including the grain boundary misorientations, the crystallographic texture and the distributions of any second phases. Significant progress has been made in the development of ECAP in recent years, thereby suggesting there are excellent prospects for the future successful incorporation of the ECAP process into commercial manufacturing operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.