Abstract

For auditory imaging, a bat emits orientation sounds (pulses) and listens to echoes. The parameters characterizing a pulse-echo pair each convey particular types of biosonar information. For example, a Doppler shift (a difference in frequency between an emitted pulse and its echo) carries velocity information. For a 61-kHz sound, a 1.0-kHz Doppler shift corresponds to 2.8 ms-1 velocity. The delay of the echo from the pulse conveys distance (range) information. A 1.0-ms echo delay corresponds to a target distance of 17 cm. The auditory system of the mustached bat, Pteronotus parnelli, from Central America solves the computational problems in analyzing these parameters by creating maps in the cerebral cortex. The pulse of the mustached bat is complex. It consists of four harmonics, each of which contains a long constant-frequency (CF) component and a short frequency-modulated (FM) component. Therefore, there are eight components in the emitted pulse (CF1-4 and FM1-4). The CF signal is particularly suited for target velocity measurement, whereas the FM signal is suited for target distance measurement. Since the eight components differ from each other in frequency, they are analyzed in parallel at different regions of the basilar membrane in the inner ear. Then, they are separately coded by primary auditory neurons and are sent up to the auditory cortex through several auditory nuclei. During the ascent of the signals through these auditory nuclei, neurons responding to the FM components process range information, while other neurons responding to the CF components process velocity information. A comparison of the data obtained from the mustached bat with those obtained from other species illustrates both the specialized neural mechanisms specific to the bat's auditory system, and the general neural mechanisms which are probably shared with many different types of animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.