Abstract

AbstractSemiconductor photocatalysis has been extensively used in the degradation of pollutants and the production of hydrogen fuel. The main drawback in the application of semiconductor photocatalysis is the rapid recombination of charge carriers. Several strategies have been applied to improve charge carrier separation to preserve them for imparting in photocatalytic reactions. Among the modifications that are made in the photocatalytic systems, the construction of different types of heterostructures, including type II, Z‐scheme, p–n junction, and Schottky junction, has received great attention. Recently, emerging S‐scheme heterojunctions have been shown to be able to preserve powerful charge carriers for photocatalytic reactions, which is not the case in other heterostructures. In this review, principles and mechanisms of charge transfer in S‐scheme heterostructures are discussed, and important semiconductors that have been used in the construction of this type of heterojunctions are reviewed. Methods for identification of S‐scheme heterojunction, challenges, and prospects have been addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.