Abstract

Beyond traditional heteroepitaxy, 2D-materials-assisted epitaxy opens opportunities to revolutionize future material integration methods. However, basic principles in 2D-material-assisted nitrides' epitaxy remain unclear, which impedes understanding the essence, thus hindering its progress. Here, the crystallographic information of nitrides/2D material interface is theoretically established, which is further confirmed experimentally. It is found that the atomic interaction at the nitrides/2D material interface is related to the nature of underlying substrates. For single-crystalline substrates, the heterointerface behaves like a covalent one and the epilayer inherits the substrate's lattice. Meanwhile, for amorphous substrates, the heterointerface tends to be a van der Waals one and strongly relies on the properties of 2D materials. Therefore, modulated by graphene, the nitrides' epilayer is polycrystalline. In contrast, single-crystalline GaN films are successfully achieved on WS2 . These results provide a suitable growth-front construction strategy for high-quality 2D-material-assisted nitrides' epitaxy. It also opens a pathway toward various semiconductors heterointegration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.