Abstract

AbstractThis paper presents a review of the principles underlying a continuum formulation of reactive transport in a porous medium. Partial differential equations representing conservation of mass are derived for transport by advection, diffusion, and electrochemical migration combined with chemical reaction of aqueous species and solids. Several examples are presented to illustrate the general theory. These include weathering along a narrow crevice, electrochemical migration in a dilute NaCl solution, secondary pyrite formation mediated through intermediate sulfur oxidation states, and a description of a uranium roll-front deposit. Numerical techniques which take advantage of the quasi-stationary state approximation, based on the much longer time scale involved in mineral alteration compared to that characterizing changes in the aqueous phase, permit solving the reactive transport equations over geologic time scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call