Abstract
Abstract Effects of filler on mechanical properties of composites result from stress concentrations developed in the matrix and filler particles. Stress concentrations in filler particles relieve stress in the matrix which, under a given load, deforms less than it would in absence of filler. This accounts for high modulus as well as strength reinforcement in filled materials. Stress concentration in the matrix, decreasing with increasing content of filler, is responsible for internal tearing of composites. Magnitude of this internal tearing, which can be measured by volume increase of a specimen under strain, depends on many factors such as: shape of filler, orientation of filler particles, particle size, particle size distribution, nature of boundary layer between filler and matrix, crosslink density and tear properties of the matrix, as well as environmental pressure in the test. High dilatation results in low tensile strength of the composite and conversely if dilatation is suppressed maximum strength reinforcement is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.