Abstract

The development of visible-light-driven catalytic antimicrobial technology is a significant challenge. In this study, heterojunctions were constructed for the appropriate modification of semiconductor-based photocatalysts. A simple hydrothermal method was used for material reconstruction, and smaller CoS2 nanoparticles were deposited and in situ grown on two-dimensional nanoflower-like ZnIn2S4 carriers to form CoS2/ZnIn2S4 (CS/ZIS) Schottky heterojunctions. Systematic study via characterization techniques and density functional theory calculations indicated that the excellent photocatalytic activity of CS/ZIS stemmed from the solid interfacial coupling between the two solid-phase materials. These materials acted as co-catalysts to increase the number of active reaction sites, enhance charge transfer, drive unidirectional electron movement, and improve charge separation efficiency, which effectively facilitated the production of reactive oxygen species (ROS). The optimized CS/ZIS heterojunction exhibited excellent performance for the efficient photocatalytic degradation of organic matter and inactivation of Escherichia coli (E. coli) compared with the ZnIn2S4 photocatalyst. Moreover, the antibacterial mechanism of the heterojunction photocatalyst and the extent of damage to the cell membrane and internal cytoplasm were explored by performing various assays. It was demonstrated that superoxide radicals are the predominant active species and multiple ROS act together to cause oxidative stress damage and cell inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.