Abstract
This article proposes and validates the principle of a new magnetorheological elastomer (MRE) dynamic vibration absorber (DVA) for powertrain mount systems of automobiles. The MRE DVA consists of a vibration absorption unit and a passive vibration isolation unit. The vibration absorption unit composed of a magnetic conductor, a shearing sleeve, a bobbin core, an electromagnetic coil, and a circular cylindrical MRE is utilized to absorb the vibration energy, and the passive vibration isolation unit is used to support the powertrain. The finite element method is employed to validate the electromagnetic circuit of the MRE DVA and obtain the electromagnetic characteristics. The theoretical frequency-shift principle is analyzed via the established constitutive equations of the circular cylindrical MRE In order to demonstrate how the parameters of the MRE influence the vibration attenuation performance, the MRE DVA is applied to a powertrain mount system to replace the conventional passive mount. The frequency-shift property of the vibration absorption unit and the vibration attenuation performance of the MRE DVA on the powertrain mount system are experimentally tested. To validate and improve the vibration attenuation performance for the semi-active powertrain mount systems, an optimal variable step algorithm is proposed for the MRE DVA and numerical experiments are carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.