Abstract

PPP-RTK which takes full advantages of both Real-Time Kinematic (RTK) and Precise Point Positioning (PPP), is able to provide centimeter-level positioning accuracy with rapid integer Ambiguity Resolution (AR). In recent years, with the development of BeiDou Navigation Satellite System (BDS) and Galileo navigation satellite system (Galileo) as well as the modernization of Global Positioning System (GPS) and GLObal NAvigation Satellite System (GLONASS), more than 140 Global Navigation Satellite System (GNSS) satellites are available. Particularly, the new-generation GNSS satellites are capable of transmitting signals on three or more frequencies. Multi-GNSS and multi-frequency observations become available and can be used to enhance the performance of PPP-RTK. In this contribution, we develop a multi-GNSS and multi-frequency PPP-RTK model, which uses all the available GNSS observations, and comprehensively evaluate its performance in urban environments from the perspectives of positioning accuracy, convergence and fixing percentage. In this method, the precise atmospheric corrections are derived from the multi-frequency and multi-GNSS observations of a regional network, and then disseminated to users to achieve PPP rapid AR. Furthermore, a cascade ambiguity fixing strategy using Extra‐Wide‐Lane (EWL), Wide-Lane (WL) and L1 ambiguities is employed to improve the performance of ambiguity fixing in the urban environments. Vehicle experiments in different scenarios such as suburbs, overpasses, and tunnels are conducted to validate the proposed method. In suburbs, an accuracy of within 2 cm in the horizontal direction and 4 cm in the vertical direction, with the fixing percentage of 93.7% can be achieved. Compared to the GPS-only solution, the positioning accuracy is improved by 87.6%. In urban environments where signals are interrupted frequently, a fast ambiguity re-fixing can be achieved within 5 s. Moreover, multi-frequency GNSS signals can further improve the positioning performance of PPP-RTK, particularly in the case of small amount of observations. These results demonstrate that the multi-frequency and multi-GNSS PPP-RTK is a promising tool for supporting precise vehicle navigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call