Abstract

A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call