Abstract

Transverse non-linear vibration is investigated in principal parametric resonance of an axially accelerating viscoelastic beam. The axial speed is characterized as a simple harmonic variation about a constant mean speed. The material time derivative isused inthe viscoelasticconstitutive relation. Thetransverse motion canbe governed by anon-linear partial-differential equation or a non-linear integro-partial-differential equation. The method of multiple scales is applied to the governing equations to determine steady-state responses. It is confirmed that the mode uninvolved in the resonance has no effect on the steady-state response. The differential quadrature schemes are developed to verify results via the method of multiple scales. It is demonstrated that the straight equilibrium configuration becomes unstable and a stable steady-state emerges when the axial speed variation frequency is close to twice any linear natural frequency. The results derived for two governing equations are qualitatively the same, but quantitatively different. Numerical simulations are presented to examine the effects of the mean speed and the variation of the amplitude of the axial speed, the dynamic viscosity, the non-linear coefficients, and the boundary constraint stiffness on the instability interval and the steady-state response amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call