Abstract
An analysis of daily‐to‐interannual variability in the surface pressure field of the Martian nothern hemisphere as given by a Martian climate model is presented. In an empirical orthogonal function (EOF) decomposition, the dominant first two modes of variability comprise a zonal wavenumber 1 feature centered at 70 N latitude moving eastward with a period of 6 to 8 sols. This feature is a baroclinic wave and accounts for 53% of the northern hemisphere non‐stationary surface pressure variability, and, when active, has an amplitude of up to 2% of local surface pressure. The third mode of the EOF decomposition is annular about the Martian north pole, is null southward of 70 N, and accounts for 7% of the northern hemisphere non‐stationary surface pressure variability. The baroclinic wave (EOFs 1 & 2) is active during northern hemisphere winter and spring, consistent with models of the Martian atmospheric circulation, and the annular mode (EOF 3) is active only at the onset and demise of the baroclinic feature. When active, it is not uncommon for the annular mode to reside in either its positive or negative state stably for 20 to 30 sols. It is postulated that baroclinic waves with longitudinal wavenumber 2, 3, and 4 act as a pump for the annular mode. The annular mode should not be present in MGS TES data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.