Abstract

The aim of this work is twofold. First, we give an inductive procedure to construct a Frobenius (resp. contact) Lie algebra from a contact (resp. Frobenius) Lie algebra. Second, we prove that all Frobenius Lie algebras can be constructed in this way, i.e., every Frobenius Lie algebra can be constructed as an extension of a contact Lie algebra by adding a distinguished element called principal derivation. Hence, classification of Frobenius Lie algebras will follow from classification of contact Lie algebras and every contact Lie algebra which admits a principal derivation is isomorphic to a subalgebra of As an example, we classify all 4-dimensional Frobenius Lie algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.