Abstract
In this article, we introduce restricted principal components regression (RPCR) estimator by combining the approaches followed in obtaining the restricted least squares estimator and the principal components regression estimator. The performance of the RPCR estimator with respect to the matrix and the generalized mean square error are examined. We also suggest a testing procedure for linear restrictions in principal components regression by using singly and doubly non-central F distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.