Abstract

In this letter, a reliable, simple, and intuitive approach for hyperspectral imagery (HSI) anomaly detection (AD) is presented. This method, namely, the global iterative principal component analysis (PCA) reconstruction-error-based anomaly detector (GIPREBAD), examines AD by computing errors (residuals) associated with reconstructing the original image using PCA projections. PCA is a linear transformation and feature extraction process commonly used in HSI and frequently appears in operation prior to any AD task. PCA features represent a projection of the original data into lower-dimensional subspace. An iterative approach is used to mitigate outlier influence on background covariance estimates. GIPREBAD results are provided using receiver-operating-characteristic curves for HSI from the hyperspectral digital imagery collection experiment. Results are compared against the Reed-Xiaoli (RX) algorithm, the linear RX (LRX) algorithm, and the support vector data description (SVDD) algorithm. The results show that the proposed GIPREBAD method performs favorably compared with RX, LRX, and SVDD and is both intuitively and computationally simpler than either RX or SVDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.