Abstract
The focus of this paper is to propose an approach to construct histogram values for the principal components of interval-valued observations. Le-Rademacher and Billard (J Comput Graph Stat 21:413---432, 2012) show that for a principal component analysis on interval-valued observations, the resulting observations in principal component space are polytopes formed by the convex hulls of linearly transformed vertices of the observed hyper-rectangles. In this paper, we propose an algorithm to translate these polytopes into histogram-valued data to provide numerical values for the principal components to be used as input in further analysis. Other existing methods of principal component analysis for interval-valued data construct the principal components, themselves, as intervals which implicitly assume that all values within an observation are uniformly distributed along the principal components axes. However, this assumption is only true in special cases where the variables in the dataset are mutually uncorrelated. Representation of the principal components as histogram values proposed herein more accurately reflects the variation in the internal structure of the observations in a principal component space. As a consequence, subsequent analyses using histogram-valued principal components as input result in improved accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.