Abstract

Principal component analysis (PCA) is often applied for analyzing data in the most diverse areas. This work reports, in an accessible and integrated manner, several theoretical and practical aspects of PCA. The basic principles underlying PCA, data standardization, possible visualizations of the PCA results, and outlier detection are subsequently addressed. Next, the potential of using PCA for dimensionality reduction is illustrated on several real-world datasets. Finally, we summarize PCA-related approaches and other dimensionality reduction techniques. All in all, the objective of this work is to assist researchers from the most diverse areas in using and interpreting PCA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.