Abstract

Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TT-PCA algorithm for estimating this structured subspace from the given data. By maintaining low rank tensor structure, TT-PCA is empirically more robust to noise as compared to PCA or Tucker-PCA. This is borne out numerically by testing the proposed approach on the Extended YaleFace Dataset B, MINIST Dataset, CIFAR-10 dataset. This paper shows that the TT-PCA methods achieve less storage requirements, and have computationally faster online implementation with improved classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.