Abstract

In this paper some statistical properties of Interval Imputation are derived in the context of Principal Component Analysis. Interval Imputation is a recent proposal for the treatment of missing values, consisting of replacing blanks with intervals and then analyzing the resulting data matrix using Symbolic Data Analysis techniques. The most noticeable virtue of this method is that it does not require a single-valued imputation, so it allows us to take into account that incomplete observations are affected by a degree of uncertainty. Illustrative examples and simulation studies are carried out in order to illustrate the functioning of the technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.