Abstract

Kalman's minimal realization theory involves geometric objects (controllable, unobservable subspaces) which are subject to structural instability. Specifically, arbitrarily small perturbations in a model may cause a change in the dimensions of the associated subspaces. This situation is manifested in computational difficulties which arise in attempts to apply textbook algorithms for computing a minimal realization. Structural instability associated with geometric theories is not unique to control; it arises in the theory of linear equations as well. In this setting, the computational problems have been studied for decades and excellent tools have been developed for coping with the situation. One of the main goals of this paper is to call attention to principal component analysis (Hotelling, 1933), and an algorithm (Golub and Reinsch, 1970) for computing the singular value decompositon of a matrix. Together they form a powerful tool for coping with structural instability in dynamic systems. As developed in this paper, principal component analysis is a technique for analyzing signals. (Singular value decomposition provides the computational machinery.) For this reason, Kalman's minimal realization theory is recast in terms of responses to injected signals. Application of the signal analysis to controllability and observability leads to a coordinate system in which the "internally balanced" model has special properties. For asymptotically stable systems, this yields working approximations of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X_{c}, X_{\bar{o}}</tex> , the controllable and unobservable subspaces. It is proposed that a natural first step in model reduction is to apply the mechanics of minimal realization using these working subspaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.