Abstract

Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value theory, where one approximates fluctuations in the τ-expectile level of the data by a low dimensional subspace. We provide algorithms based on iterative least squares, prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.