Abstract

Membrane lipids are inherently highly dynamic molecules. Currently, it is difficult to probe the structures of individual lipids experimentally at the timescales corresponding to atomic motions, and consequently molecular dynamics simulations are used widely. In our previous work, we have introduced the principal component analysis (PCA) as a convenient framework for comprehensive quantitative description of lipid motions. Here, we present a newly developed open source script, PCAlipids, which automates the analysis and allows us to refine the approach and test its limitations. We use PCAlipids to determine the influence of temperature, cholesterol and curvature on individual lipids, and show that the most prominent lipid tail scissoring motion is strongly affected by these factors and allows tracking of phase transition. Addition of cholesterol affects the conformations and selectively changes the dynamics of lipid molecules, impacting the large-amplitude motions. Introduction of curvature biases the conformational ensembles towards more extended structures. We hope that the developed approach will be useful for understanding the molecular basis of different processes occurring in lipid membrane systems and will stimulate development of complementary experimental techniques probing the conformations of individual lipid molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.