Abstract

This paper introduces a principal component methodology for analysing histogram-valued data under the symbolic data domain. Currently, no comparable method exists for this type of data. The proposed method uses a symbolic covariance matrix to determine the principal component space. The resulting observations on principal component space are presented as polytopes for visualization. Numerical representation of the resulting polytopes via histogram-valued output is also presented. The necessary algorithms are included. The technique is illustrated on a weather data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.