Abstract

The multivariate analysis to optimize the parameters of wastewater is essential to reduce costs. The aim of this study was to evaluate the use of multivariate and conventional analysis in biological system composed by upflow anaerobic sludge blanket (UASB), submerged aerated biological filters (SABF) and horizontal subsurface flow constructed wetland (HSSF-CW) reactors in the organic stabilization of swine wastewater (SW). Four loads were used in the system with alteration by COD concentration of untreated SW, and the data were evaluated by principal components (PCA). The average efficiency of COD and BOD removal increased from 45% in phase I to 67% in phase IV in the UASB, SABF and HSSF-CW reactors. The principal component analysis promoted the reduction of 13 original variables to 5, 8 and 5 principal components in the UASB, SABF and HSSF-CW reactors, respectively, optimizing the dynamics of interpretation of the data that influenced the most the stability of the wastewater system across the four phases. There was a strong negative effect of oxygen concentrations in the SABF reactor in relation to organic variables, optimizing the biological mechanisms of the HSSF-CW and, therefore, enabling better decision making and cost reduction with analysis at treatment plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.