Abstract
Using the notion of a root datum of a reductive group G we propose a tropical analogue of a principal G-bundle on a metric graph. We focus on the case G=GLn, i.e. the case of vector bundles. Here we give a characterization of vector bundles in terms of multidivisors and use this description to prove analogues of the Weil–Riemann–Roch theorem and the Narasimhan–Seshadri correspondence. We proceed by studying the process of tropicalization. In particular, we show that the non-Archimedean skeleton of the moduli space of semistable vector bundles on a Tate curve is isomorphic to a certain component of the moduli space of semistable tropical vector bundles on its dual metric graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.