Abstract

Simple evolutionary models of asteroids of various sizes and solar distances have been constructed assuming unipolar electrical induction heating due to passage of the Sun through a T Tauri phase with an increased magnetic field. Typical T Tauri conditions and an elementary solar wind model were used to calculate induced currents in modlels assuming electrical conductivities appropriate for carbonaceous material. Two restrictions with opposite dependence upon radius dominate the results. The electrical insulating tendency of a cold surface favors heating of larger bodies. The current-limiting backpressure of the induced magnetic field favors heating of smaller bodies. Thus it is found that maximum heating, in some cases sufficient for melting, occurs for model asteroids at the inner edge of the belt and with (model-dependent) radii from 25 to 250 km. This effect, if operant, would have produced a primordial distribution of metamorphosed asteroids primarily occurring at small solar distance and intermediate size. The observational evidence for such a distribution is unclear because the primordial distribution has likely been considerably modified by collisions, particularly at smaller sizes. There does seem to be some consistency with the model in the distribution of the largest asteroids, though data are sparse. In particular, this model seems relevant to the well-known dichotomy between Ceres and Vesta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call