Abstract

AbstractWe use the f2FF model to study the generation of primordial magnetic fields (PMF) in the context of large field inflation (LFI), described by the potential, V ∼ Mϕp. We compute the magnetic and electric spectra for all possible values of the model parameters under de Sitter and power law expansion. We show that scale invariant PMF are not obtained in LFI to first order in the slow roll approximation, if we impose the constraint V (ϕ = 0) ∼ 0. Alternatively, if these constraints are relaxed, the scale invariant PMF can be generated. The associated electric field energy can fall below the energy density of inflation, ρInf for the ranges of comoving wavenumbers, k > 8 × 10–7 Mpc–1 and k > 4 × 10–6 Mpc–1 in de Sitter and power law (PL) expansion. Further, it can drop below ρInf on the ranges, e‐foldings N > 51, p < 1.66, p > 2.03, l0 > 3 × 105 MPl–1(Hi < 3.3 × 10–6 MPl), and M > 2.8 × 10–3 MPl. All of the above ranges fit with the observational constraints. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call