Abstract
Anisotropies in the cosmic microwave background (CMB) are primarily generated by Thomson scattering of photons by free electrons. Around recombination, the Thomson scattering probability quickly diminishes as the free electrons combine with protons to form neutral hydrogen off which CMB photons can scatter through Rayleigh scattering. Unlike Thomson scattering, Rayleigh scattering is frequency dependent resulting in the generation of anisotropies with a different spectral dependence. Unfortunately the Rayleigh scattering efficiency rapidly decreases with the expansion of the neutral universe, with the result that only a small percentage of photons are scattered by neutral hydrogen. Although the effect is very small, future CMB missions with higher sensitivity and improved frequency coverage are poised to measure Rayleigh scattering signal. The uncorrelated component of the Rayleigh anisotropies contains unique information on the primordial perturbations that could potentially be leveraged to expand our knowledge of the early universe. In this paper we explore whether measurements of Rayleigh scattering anisotropies can be used to constrain primordial non-Gaussianity (NG) and examine the hints of anomalies found by WMAP and \textit{Planck} satellites. We show that the additional Rayleigh information has the potential to improve primordial NG constraints by $30\%$, or more. Primordial bispectra that are not of the local type benefit the most from these additional scatterings, which we attribute to the different scale dependence of the Rayleigh anisotropies. Unfortunately this different scaling means that Rayleigh measurements can not be used to constrain anomalies or features on large scales. On the other hand, anomalies that may persist to smaller scales, such as the potential power asymmetry seen in WMAP and \textit{Planck}, could be improved by the addition of Rayleigh measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.