Abstract

BackgroundThe Houbara bustard (Chlamydotis undulata) is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring.Methodology/Principal FindingsEmbryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs) was injected into White Leghorn chicken (Gallus gallus domesticus) embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16) gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster.ConclusionThis study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising tool for propagation and conservation of endangered avian species that cannot breed in captivity.

Highlights

  • The Houbara bustard is classified as vulnerable on the IUCN Red List and is listed on Appendix I of CITES [1,2]

  • This study demonstrates for the first time that Houbara gonadal primordial germ cells (gPGCs) can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis

  • The Houbara bustard is separated into three sub-species: Chl. undulata undulata, Chl. undulata macqueenii and Chl. undulata fuertaventurae with Chl. undulata macqueenii being the main species in Arabia [3]

Read more

Summary

Introduction

The Houbara bustard is classified as vulnerable on the IUCN Red List and is listed on Appendix I of CITES [1,2] It is a medium sized bustard of slender appearance, belonging to the order Gruiformes and it is the only species of the genus Chlamydotis (Chl.). The domesticated chicken (Gallus gallus domesticus) belongs to the order Galliformes, and can, by contrast, produce fertile eggs nonseasonally throughout year under captive breeding conditions. For this reason, chicken is widely used as and agricultural animal and as an experimental model species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.