Abstract

Scalar field with generalized kinetic interactions metamorphoses depending on its field value, ranging from cosmological constant to stiff matter. We show that such a scalar field can give rise to temporal enhancement of the curvature perturbation in the primordial Universe, leading to efficient production of primordial black holes while the enhancement persists. If the inflation energy scale is high, those mini-black holes evaporate by the Hawking radiation much before Big Bang nucleosynthesis and the effective reheating of the Universe is achieved by the black hole evaporation. Dominance of PBHs and the reheating by their evaporation modify the expansion history of the primordial Universe. This results in a characteristic feature of the spectrum of primordial tensor modes in the DECIGO frequency band, opening an interesting possibility of testing PBH reheating scenario by measuring the primordial tensor modes. If the inflation energy scale is low, the PBH mass can be much larger than the solar mass. In this case, PBH is an interesting candidate for seeds for supermassive black holes residing in present galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.