Abstract

Moments of the impulse response are widely used for interconnect delay analysis, from the explicit Elmore delay (first moment of the impulse response) expression, to moment matching methods which create reduced order transimpedance and transfer function approximations. However, the Elmore delay is fast becoming ineffective for deep submicron technologies, and reduced order transfer function delays are impractical for use as early-phase design metrics or as design optimization cost functions. This paper describes an approach for fitting moments of the impulse response to probability density functions so that delays can be estimated from probability tables. For RC trees it is demonstrated that the incomplete gamma function provides a provably stable approximation. The step response delay is obtained from a one-dimensional table lookup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.