Abstract

3D insect models are useful to overcome viewing angle variations and self-occlusions in computer-assisted insect taxonomy for electronic field guides. The acquisition of 3D information is, however, unreliable due to the flexibility and small size of the insect bodies. This paper explores how to infer 3D insect models from a single 2D insect image, which will assist both insect description and identification. The 3D structure of the insect body is modeled from two geometric primitives, generalized cylinders and deformable ellipsoids. The primitives are fitted and warped based on both edge and medial axis constraints of the 2D image. Individualized 3D models are then built to approximate the insect structure. The proposed approach results in seemingly useful 3D insect models capable of representing the major morphological characteristics for a variety of insects with different body types. This method could be a helpful assistance for computer-assisted insect taxonomy and insect identification by entomologists and the public.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call