Abstract

Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a refinement of Howard's ordinal analysis of bar recursion that $\text{WKL}_0^\omega+\text{CAC}$ is $\Pi^0_2$-conservative over PRA and that one can extract primitive recursive realizers for such statements. Moreover, our proof is finitary in the sense of Hilbert's program. CAC implies that every sequence of $\mathbb{R}$ has a monotone subsequence. This Bolzano-Weierstras}-like principle is commonly used in proofs. Our result makes it possible to extract primitive recursive terms from such proofs. We also discuss the Erdős-Moser principle, which—taken together with CAC—is equivalent to $\text{RT}^2_2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.