Abstract

The development of simple, primitive model descriptions for electrolyte solutions is usually carried out by fitting the system parameters to reproduce some experimental data. We propose an alternative method, that allows one to derive implicit solvent models of electrolyte solutions from all-atom descriptions. We obtain analytic expressions for the thermodynamic and structural properties of the ions, which are in good agreement with the underlying explicit solvent representation, provided that ion association is taken into account. Effective ion-ion potentials are derived from molecular dynamics simulations and are used within a first-order perturbation theory to derive the best possible description in terms of charged hard-spheres. We show that our model provides a valid description for a series of 1-1 electrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.