Abstract

Abstract. Airborne LiDAR data and optical imagery are two datasets used for 3D building reconstruction. In this paper, the complementarities of these two datasets are utilized to perform a primitive-based 3D building reconstruction. The proposed method comprises following steps: (1) recognize primitives from LiDAR point cloud and roughly measure primitives' parameters as initial values, and (2) select primitives' features on the imagery, and (3) optimize primitives' parameters by the constraints of LiDAR point cloud and imagery, and (4) represent 3D building model by these optimized primitives. Compared with other modelbased or CSG-based methods, the proposed method is simpler. It only uses the most straightforward features, i.e. planes of LiDAR point cloud and points of optical imagery. The experimental result shows this primitive-based method can accurately reconstruct 3D building model. And it can tightly integrate LiDAR point cloud and optical imagery, that is to say, all primitives’ parameters are optimized with all constraints in one step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.