Abstract

The present study shows that the inclusion of 5% Dextran (average mol. wt. 40 000) in solutions to preserve in vitro rabbit corneal endothelium induces a sizable osmotic flow across the preparation which is superimposed on the existing fluid transport. Furthermore, even after fluid transport ceases due to in vitro deterioration, the Dextran-induced flow remains for some addition time. The osmotic permeability was 162 ± 17 μ m/s in the presence of glucose and 451 ± 84 μ m/s in its absence. The latter, comparatively high value suggests that such osmotic flow traverses the intercellular junctions. In addition, temporary (10–15 min) imposition of an osmotic gradient has a separate stimulatory ‘priming’ effect on the rate of fluid transport. Thus, the rate of fluid pumping increased by about 40% after challenge with Dextran. It was further noted that, after addition of Dextran, preparations in the absence of glucose escape gross deterioration for a time longer than those in the presence of glucose. On the other hand, mere addition of Dextran to a glucose-containing solution does not appear to prolong the estimated ‘survival time’ of the pumping mechanism. The sizable osmotic flows and the priming effect described here may provide a physiological context with which previously described Dextran effects on cornea preservation can now be compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.