Abstract
Administration of the Group 1 metabotropic glutamate receptor (mGluR) agonist ( R,S)-3,5-dihydroxyphenylglycine (DHPG) facilitates (“primes”) subsequent long-term potentiation (LTP) through a phospholipase C signaling cascade that may involve release of Ca 2+ from the endoplasmic reticulum (ER). We investigated the intracellular calcium pathways involved in this priming effect, recording field potentials from area CA1 of rat hippocampal slices before and after high-frequency stimulation. The priming of LTP by DHPG was prevented by co-administration of cyclopiazonic acid, which depletes ER Ca 2+ stores. The priming effect was also blocked by the ryanodine receptor (RYR) antagonist ryanodine (RYA, 100 μM). In contrast, a low dose of RYA (10 μM) which opens the RYR channel, by itself primed LTP. In addition to RYR activation, entry of extracellular calcium through store-operated channels appears necessary for priming, since diverse treatments known to impede store-operated channel activity completely blocked both RYA and DHPG priming effects. Thus, RYR activation plays a critical role in the priming of LTP by Group 1 mGluRs, and this effect is coupled to the entry of extracellular calcium, probably through store-operated calcium channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.