Abstract

Mice were immunized i.p. with soluble or heat-denatured protein antigens [ovalbumin, beta-galactosidase, or recombinant E7 protein of human papilloma virus type 16 (HBV)]. Heat-denatured (100 degrees C) preparations of these proteins were able to induce cytotoxic T lymphocytes (CTL) that recognize cells expressing the respective genes, whereas native protein was either inefficient or required up to 30-fold higher doses. If the heat-treated proteins were separated into aggregated and soluble fractions by ultracentrifugation, only the aggregated fractions were able to induce specific CTL; this is probably because of the easier access to one of the major histocompatibility complex class I loading pathways for exogenous antigen. Addition of the adjuvant aluminium hydroxide (alum) to aggregated proteins abolished their ability to induce CTL; thus, a condition leading to a strong antibody response appeared to inhibit CTL induction. Interestingly, immunization with heat-denatured ovalbumin plus alum increased the IgM/IgG1 ratio compared to immunization with native ovalbumin and alum. Immunization of B6 mice transgenic for an HLA-A2/H-2K(b) hybrid gene with heat-denatured, recombinant HPV 16-E7 protein induced D(b)-restricted CTL specific for the peptide 49-57 of E7, indicating that this epitope is immunodominant over any A2-restricted E7 epitope in these mice. A whole influenza virus preparation heated to 100 degrees C or even autoclaved was still able to induce virus-specific CTL and BALB/c spleen cells heated to 100 degrees C could still cross-prime minor H-specific CTL in B6 mice, although with lower efficiency than fresh spleen cells. Thus, aggregated proteins can be considered as components for future vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call