Abstract
In addition to the mobilization of neutrophils and monocytes, granulocyte-macrophage colony-stimulating factor (GM-CSF) also mobilizes lymphocytes into peripheral blood. We examined the ability of GM-CSF to induce the proliferation of purified human T cells (CD3+ CD4+ CD56- CD16- B1- MO2-) in two major aspects: (1) the mechanisms of GM- CSF interaction with interleukin-2 (IL-2) causing T-cell proliferation, and (2) the intracellular signals transmitted by GM-CSF in T lymphocytes. We observed that concentrations of GM-CSF between 0.01 ng/mL and 10 ng/mL had a synergistic effect with concentrations of IL-2 between 1 U/mL and 10 U/mL in stimulating T-cell proliferation. This effect of GM-CSF was maximal when it was added at the start of the culture. In situ hybridization showed the presence of mRNA for GM-CSF receptors in T cells. Further analysis showed that GM-CSF induced the expression of IL-2 receptor (IL-2R) on the surface of T lymphocytes. These events coincide with the ability of GM-CSF to increase the intracellular levels of both cyclic 3′,5′-adenosine monophosphate (cAMP) and cyclic 3′,5′-guanosine monophosphate (cGMP) in T cells, to increase the binding of (gamma-35S) GTP to T-cell membranes, and to enhance GTPase activity as determined by increased hydrolysis of 32P- GTP. IL-2 also induced IL-2R expression, cyclic nucleotide secretion, and G-protein activation. However, the presence of IL-2 reduced GM-CSF induction of these activities. Addition of antibodies to the alpha and beta subunits of IL-2R permitted the activation of G protein by GM-CSF even when IL-2 was present. Furthermore, GTP binding and GTPase activity induced by GM-CSF or IL-2 were inhibited by the addition of cholera toxin (CT), but not pertussis toxin (PT). Cumulatively, these results suggest that in T lymphocytes, receptors for GM-CSF or IL-2 may be coupled to the same CT-sensitive G protein, although other possibilities may exist. The role that G proteins play in mediating the intracellular signaling pathways induced by GM-CSF or IL-2 in human T cells is supported by adenosine diphosphate-ribosylation of a 44-kD or a 39-kD G protein in T-cell membranes by CT and PT, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.