Abstract

Priming is an increase in soil organic carbon decomposition following input of labile organic carbon. In temperate soils where biological activity is limited commonly by nitrogen availability, priming is expected to occur through microbial acquisition of nitrogen from organic matter or stimulated activity of recalcitrant-carbon degrading microorganisms. However, these priming mechanisms have not yet been assessed in strongly weathered tropical forest soils where biological activity is often limited by the availability of phosphorus. We examined whether microbial nutrient limitation or community dynamics drive priming in three lowland tropical forest soils of contrasting fertility (‘low’, ‘mid’ and ‘high’) by applying C4-sucrose (alone or in combination with nutrients; nitrogen, phosphorus and potassium) and measuring (1) the δ13C-signatures in respired CO2 and in phospholipid fatty acid (PLFA) biomarkers, and (2) the activities of enzymes involved in nitrogen (N-acetyl β-glucosaminidase), phosphorus (phosphomonoesterase) and carbon (β-glucosidase, cellobiohydrolase, xylanase, phenol oxidase) acquisition from organic compounds. Priming was constrained in part by nutrient availability, because priming was greater when sucrose was added alone compared to when added with nutrients. However, the greatest priming with sucrose addition alone was detected in the medium fertility soil. Priming occurred in parallel with stimulated activity of phosphomonoesterase and phenol oxidase (but not N-acetyl β-glucosaminidase); when sucrose was added with nutrients there were lower activities of phosphomonoesterase and phenol oxidase. There was no evidence according to PLFA δ13C-incorporation that priming was caused by specific groups of recalcitrant-carbon degrading microorganisms. We conclude that priming occurred in the intermediate fertility soil following microbial mineralization of organic nutrients (phosphorus in particular) and suggest that priming was constrained in the high fertility soil by high nutrient availability and in the low fertility soil by the low concentration of soil organic matter amenable to priming. This first study of priming mechanisms in tropical forest soils indicates that input of labile carbon can result in priming by microbial mineralization of organic nutrients, which has important implications for understanding the fate of organic carbon in tropical forest soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call