Abstract

The nosZ gene encodes nitrous oxide reductase, a key enzyme in the nitrous oxide reduction that occurs during complete denitrification. Many conventional approaches have used Proteobacteria-based primers to detect nosZ in environmental samples. However, these primers often fail to detect nosZ in non-Proteobacteria strains, including Firmicutes (Gram-positive) and Bacteroidetes. In this study, newly designed nosZ primers successfully amplified this gene from five Geobacillus species (Firmicutes). The primers were used to construct nosZ clone libraries from DNA extracted from sludge and domestic animal feedlot soils, all with high organic carbon contents. After DNA sequencing, phylogenetic analysis identified many new nosZ sequences with high levels of homology to nosZ from Bacteroidetes, probably because of the high sequence similarity of nosZ from Firmicutes and Bacteroidetes, and a predominance of Bacteroidetes in feedlot environments. Three sets of new quantitative real-time PCR (qPCR) primers based on our clone library sequences were designed and tested for their specificities. Our data showed that only Bacteroidetes-related nosZ sequences were amplified, whereas conventional Proteobacteria-based primers amplified only Proteobacteria-related nosZ. Quantitative analysis of nosZ with the new qPCR primers recovered ~10(4) copies per 100 ng DNA. Thus, it appears that amplification with conventional primers is insufficient for developing an understanding of the diversity and abundance of nosZ genes in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.