Abstract

Alkaline phosphatase (ALP) is an important diagnostic indicator for various human diseases including bone diseases, liver dysfunction, diabetes, breast and prostatic cancers. However, the conventional methods for ALP assay are usually cumbersome and time-consuming with low sensitivity. Here, we develop a new fluorescent method for ultrasensitive detection of ALP activity on the basis of primer dephosphorylation-initiated isothermal circular exponential amplification. We design two dual-functional hairpin probes (HP1 and HP2), which function as both the templates for exponential amplification reaction (EXPAR) and the generators for signal output. In the presence of ALP, the 3'-phosphorylated primer is dephosphorylated and subsequently hybridizes with the 3' protruding end of HP1 to initiate the first strand displacement amplification (SDA), producing trigger 1 and fluorescence signal. The released trigger 1 is complementary to the 3' protruding end of HP2 for the initiation of the second SDA, producing trigger 2 and fluorescence signal. Notably, trigger 2 is complementary to the 3' protruding end of HP1 and may subsequently initiate two consecutive SDAs, enabling circular EXPAR to generate an amplified fluorescence signal. This method exhibits high sensitivity with a detection limit of 2.0 × 10-10 U μL-1 and a large dynamic range of 5 orders of magnitude from 1.0 × 10-9 to 1.0 × 10-4 U μL-1, and it can measure ALP at the single-cell level. Importantly, this method can be applied for the measurement of kinetic parameters and the screening of potential inhibitors, providing a powerful tool for ALP-related biomedical research and clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call