Abstract

BackgroundDNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads.ResultsWe show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12–15 h of sequencing.ConclusionOur results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.