Abstract

In this paper we investigate the problem of embedding a number of points given certain (but typically not all) inter-pair distance measurements. This problem is relevant for multi-dimensional scaling problems with missing data, and is applicable within anchor-free sensor network node calibration and anchor-free node localization using radio or sound TOA measurements. There are also applications within chemistry for deducing molecular 3D structure given inter-atom distance measurements and within machine learning and visualization of data, where only similarity measures between sample points are provided. The problem has been studied previously within the field of rigid graph theory. Our aim is here to construct numerically stable and efficient solvers for finding all embeddings of such minimal rigid graphs. The method is based on the observation that all graphs are either irreducibly rigid, here called prime rigid graphs, or contain smaller rigid graphs. By solving the embedding problem for the prime rigid graphs and for ways of assembling such graphs to other minimal rigid graphs, we show how to (i) calculate the number of embeddings and (ii) construct numerically stable and efficient algorithms for obtaining all embeddings given inter-node measurements. The solvers are verified with experiments on simulated data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.